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Abstract
Understanding the behavior of applications running on high-level
language virtual machines, as is the case in Java, is non-trivial be-
cause of the tight entanglement at the lowest execution level be-
tween the application and the virtual machine. This paper proposes
Javana, a system for building Java program analysis tools. Javana
provides an easy-to-use instrumentation infrastructure that allows
for building customized profiling tools very quickly.

Javana runs a dynamic binary instrumentation tool underneath
the virtual machine. The virtual machine communicates with the
instrumentation layer through an event handling mechanism for
building a vertical map that links low-level native instruction point-
ers and memory addresses to high-level language concepts such as
objects, methods, threads, lines of code, etc. The dynamic binary
instrumentation tool then intercepts all memory accesses and in-
structions executed and provides the Javana end user with high-
level language information for all memory accesses and natively
executed instructions.

We demonstrate the power of Javana through a number of ap-
plications: memory address tracing, vertical cache simulation and
object lifetime computation. For each of these applications, the in-
strumentation specification requires only a small number of lines
of code. Developing similarly powerful profiling tools within a vir-
tual machine (as done in current practice) is both time-consuming
and error-prone; in addition, the accuracy of the obtained profiling
results might be questionable as we show in this paper.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Tracing; D.3.4 [Processors]: Run-time Environments

General Terms Experimentation, Measurement, Performance

Keywords Customized Program Analysis Tool, Java, Aspect-
Oriented Instrumentation

1. Introduction
Understanding the behavior of software is of primary importance
to improve its performance. Application and system software de-
velopers need a good understanding of an application’s behavior in
order to optimize overall system performance. Analyzing the be-
havior of applications written in languages such as C and C++ is a
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well understood problem. However, understanding the behavior of
modern software that relies on a runtime system, also called a vir-
tual machine (VM), is much more challenging. The popularity of
high-level language virtualization software has grown significantly
over the recent years with programming environments such as Java
and .NET. The reasons for the increased popularity of high-level
language virtual machines are portability, security, robustness, au-
tomatic memory management, etc. Virtualization though makes the
behavior of modern software fairly hard to understand because of
the tight entanglement between the application and the virtualiza-
tion software.

1.1 The Javana concept
This paper proposes Javana, a system for building customized Java
program analysis tools. Javana comes with an easy-to-use instru-
mentation framework so that only a few lines of instrumentation
code need to be programmed for building powerful profiling tools.
The Javana instrumentation framework provides the end user with
both high-level and low-level information. The high-level informa-
tion relates to the Java application and the VM, such as thread IDs,
method IDs, source code line numbers, object IDs, object types,
etc. The low-level information consists of instruction pointers and
memory addresses. Running the Java application of interest within
the Javana system along with user-specified instrumentation rou-
tines then collects the desired profiles of the Java application.

The Javana system consists of a VM along with a dynamic bi-
nary instrumentation tool that runs underneath the VM. The virtual
machine communicates with the dynamic binary instrumentation
tool through an event handling mechanism. The virtual machine
informs the instrumentation layer about a number of events, for
example when an object is created, moved or collected, or when
a method gets compiled or re-compiled, etc. The dynamic binary
instrumentation tool then catches these events and subsequently
builds a vertical map that links instruction pointer and memory ad-
dresses to high-level language concepts.

The dynamic binary instrumentation tool also captures all na-
tively executed machine instructions during a profiling run within
Javana; this includes instructions executed in native functions
called through the Java Native Interface (JNI). Instrumenting all
natively executed machine instructions causes a substantial slow-
down, however, it enables Javana to know for all native instruc-
tions from what method and thread the instruction comes and to
what line of source code the instruction corresponds; and for all ac-
cessed memory locations, Javana knows what objects are accessed.

The Javana concept is also easy to transfer to other virtual ma-
chines and other dynamic binary instrumentation tools; building a
Javana system is easy to do. Only a few lines of code need to be
added to the virtual machine to make the virtual machine Javana-
enabled as we demonstrate through our proof-of-concept imple-
mentation that combines the Jikes RVM [1] with DIOTA [16, 17].



Our proof-of-concept Javana implementation is publicly available
at http://www.elis.ugent.be/javana/.

1.2 Applications
Javana enables the building of vertical profiling tools, i.e., profil-
ing tools that crosscut the Java application, the VM and the native
execution layers. Vertical profiling tools are invaluable for gaining
insight into the overall performance and behavior of a Java appli-
cation. When looking at the lowest level of the execution stack,
i.e., when looking at the individual instructions executed on the
host machine, it is hard to understand the application’s behavior
because of the fact that the virtualization software gets intermixed
with application code.

However, when the goal is deep understanding of the applica-
tion’s behavior, the lowest level of the execution stack really is the
level to look at. Vertical profiling enables gaining such insights
and Javana makes vertical profiling easy to do. Building equally
powerful profiling tools without Javana is both tedious and error-
prone; modifying the virtual machine by adding instrumentation
code changes the code and data layout which perturbs the native
execution behavior substantially. Dynamic binary instrumentation
underneath the virtual machine as done in Javana alleviates this is-
sue.

In this paper we demonstrate the power of Javana through three
applications. Our first application is memory address tracing. A re-
cent study published by Shuf et al. [21] analyzed the memory be-
havior of Java applications based on memory address traces. They
instrumented the virtual machine to trace all heap accesses, but did
not trace stack accesses. We found that on average 58% of all mem-
ory accesses in a Java application are non-heap accesses. As such,
not including non-heap accesses in a memory behavior analysis
study may significantly skew the overall results. The Javana system
captures all memory accesses and consequently is more accurate.

In our second application we build a vertical profiling tool for
analyzing the memory hierarchy behavior of Java applications. This
cache performance profiling tool tracks cache miss rates per ob-
ject type and per method and thus allows for quickly computing
the top most cache miss causing lines of code, the top most cache
miss causing object types, etc. This is invaluable information for
an application developer who wants to optimize the memory per-
formance of his software. Again, we want to emphasize how easy
this profiling tool was to set up — only a few lines of instrumenta-
tion code are needed.

Our third application shows how easy it is to build an object
lifetime analysis tool in Javana. Previous work [20] has shown that
object lifetime is an important characteristic which can be used for
analyzing and optimizing the memory behavior of Java applica-
tions. Computing an object’s lifetime, although conceptually sim-
ple, is challenging in practice without Javana because the virtual
machine needs to be adjusted in numerous ways in order to track
all possible accesses to all objects, including accesses that occur
through the Java Native Interface (JNI). This requires an in-depth
understanding of the virtual machine. Computing object lifetime
distributions with Javana on the other hand, is easy to set up and in
addition, is guaranteed to deliver accurate object lifetimes.

1.3 Paper organization
This paper is organized as follows. We first detail on the Javana sys-
tem and subsequently describe the Javana instrumentation language
that we developed as part of the Javana system. We then quantify
Javana’s performance and demonstrate how powerful Javana is for
quickly building customized Java program analysis tools. Finally,
we discuss related work and conclude the paper.
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Figure 1. The Javana system for profiling Java applications.

2. The Javana system
Figure 1 illustrates the basic concept of the Javana system. The top
of the execution stack shows a Java application that is to be profiled.
The Java application together with a number of Java libraries runs
on top of a virtual machine. The virtual machine translates Java
bytecode instructions into native instructions. A dynamic binary
instrumentation tool resides beneath the virtual machine and tracks
all native instructions executed by the virtual machine.

The key point of the Javana system is that the virtual machine
informs the dynamic binary instrumentation tool through an event
handling mechanism whenever an object is created, moved, or
deleted; or a method is compiled, or re-compiled; or a thread is cre-
ated, switched or terminated. The dynamic binary instrumentation
tool then uses these events to build vertical maps that associate na-
tive instruction pointers and memory addresses with objects, meth-
ods, threads, etc. The dynamic binary instrumentation tool also in-
tercepts all memory accesses during the execution of the Java appli-
cation on the virtual machine. This includes instructions executed
in native JNI functions, but excludes kernel-level system calls as
will be discussed later. Using the vertical maps, the binary instru-
mentation tool associates native machine addresses to high-level
concepts such as objects, methods, etc. This high-level information
along with the low-level information is then made available to the
end user through the Javana instrumentation framework.

The remainder of this section discusses the Javana system in
more detail. We discuss the events that are triggered by the vir-
tual machine, the dynamic binary instrumentation layer in the Ja-
vana system, the event handling mechanism, the vertical instru-
mentation, the perturbation of the Javana system and finally our
Javana proof-of-concept implementation. All of the subsections be-
low give more-or-less a general description of what the issues are
for building a Javana system; the final subsection then discusses our
own proof-of-concept implementation.

2.1 Events triggered by the virtual machine
The Javana system requires that the virtual machine is instrumented
to trigger events. These events communicate information between
the virtual machine and the dynamic binary instrumentation tool.
Our current Javana system supports the following events:

• Class loading: When a new class is loaded and a new object
type becomes available, the new class name is communicated
to the binary instrumentation tool.

• Object allocation: When a new object is allocated, the object’s
type and memory location (object starting address and its size)
are communicated.

http://www.elis.ugent.be/javana/


• Object relocation: When an object is copied by the garbage
collector, the object’s new location is communicated to the
instrumentation tool.

• Method compilation: When a method is compiled, its name,
memory location and a ‘code to line number’ map are com-
municated to the instrumentation tool.

• Method recompilation: When a method is recompiled, the
method’s location and ‘code to line number’ map are updated
in the binary instrumentation tool.

• Method relocation: When code is moved by the garbage collec-
tor, the code’s new location in memory is communicated.

• Memory freed during garbage collection: When memory is
freed, the address range of the freed memory space is commu-
nicated to the binary instrumentation tool.

• Java thread creation: When a new Java thread is created, the
thread’s ID and name are communicated.

• Java thread switch: When a Java thread switch occurs, the newly
scheduled Java thread’s ID is communicated.

• Java thread termination: When a Java thread has ended execu-
tion, this is communicated to the dynamic binary instrumenta-
tion tool.

• Java thread stack switch: When a Java thread stack is relocated,
the thread ID, the old stack location and the new stack location
are communicated.

Note that this event list is just an example event list that could be
tracked within a Javana system. Additional events could be defined
and added to this list if desired; implementing events in a virtual
machine is easy to do. We found though that this list of events
is sufficient for our purpose of building powerful Java program
analysis tools, as will be shown in the remainder of this paper.

2.2 Dynamic binary instrumentation
A dynamic binary instrumentation tool takes as input a binary and
an instrumentation specification. The binary is the program of in-
terest; this is the Java application running on a virtual machine in
our case. The instrumentation specification indicates what needs
to be instrumented in the binary; this is going to drive the cus-
tomized profiling. The dynamic binary instrumentation tool then
instruments the program of interest at run time. Upon the first exe-
cution of a given code fragment, the instrumentation tool reads the
original code, modifies it according to the instrumentation specifi-
cation and stores the result as part of the instrumented binary. The
instrumented version of the code is then executed and the desired
profiling information is collected while executing the instrumented
binary.

The data memory addresses referenced by the loads and stores
in the instrumented binary are identical to the uninstrumented bi-
nary. By keeping the original binary in memory at its original ad-
dress while generating the instrumented binary elsewhere, the in-
strumented binary obtains correct data values from the original
uninstrumented binary in case data-in-code is read. The instrumen-
tation tool also keeps track of correspondences between instruction
pointers in the original binary versus the instrumented binary. By
doing so, the instrumentation routines see instruction pointers and
memory addresses as if they were generated during the execution
of the original binary.

Running a dynamic binary instrumentation tool underneath a
virtual machine requires that the instrumentation tool can deal with
self-modifying code. The reason is that most virtual machines im-
plement a dynamic optimizer that detects and (re-)optimizes fre-
quently executed code fragments. A similar issue occurs when

garbage is collected; copying collectors may copy code from one
memory location to another. This requires that the dynamic instru-
mentation tool invalidates the old code fragment and replaces it
with an instrumented version of the newly generated code frag-
ment.

Previous work [16] has proposed various approaches to instru-
menting self-modifying code. These approaches vary in granular-
ity for tracking self-modifying code: some approaches track mem-
ory page level accesses, other approaches track individual memory
operations. The bottom line is that all of them cause a substantial
slowdown in execution time of the instrumented binary, in some
cases to up to a factor 20. However, since the virtual machine com-
municates with the dynamic binary instrumentation tool through
an event handling mechanism, we can optimize the self-modifying
code support. We use the information provided by the event han-
dling to invalidate an old code fragment and to replace it with an
instrumented version of the new code fragment. This eliminates the
slowdown for supporting self-modifying code almost completely.

Note that the dynamic binary instrumentation tool does not track
kernel-level system calls. This limits the use of Javana to user-space
instrumentation.

2.3 Event handling
The virtual machine triggers events by calling empty functions;
these empty functions are native C functions. The dynamic binary
instrumentation tool intercepts such function calls and in response
calls the appropriate event handlers. Event handlers can accept ar-
guments because the arguments placed on the stack by the virtual
machine are available to the binary instrumentation tool as well. For
example, when allocating an object, the virtual machine calls the
AllocateObject function with a number of arguments, namely
the object type t, its address m and its size s. The dynamic bi-
nary instrumentation tool intercepts such events by inspecting the
target addresses of the function calls. If the target address corre-
sponds to the AllocateObject function in the above example
— the dynamic binary instrumentation tool knows this function by
name from the symbol information of the virtual machine — the
dynamic binary instrumentation tool transfers control to the appro-
priate event handler which in turn reads the arguments from the
stack and adds this information to its internal data structures. When
the event handler has finished execution, control is transfered to the
return address of the event’s function call, i.e., the instrumented bi-
nary gets control again.

Event handling enables the dynamic instrumentation tool to
build the vertical map. In the above example with the Allocate-
Object event, the event handler adds the following information
to the vertical map: an object of type t is allocated in the memory
address range m to m+s. Similar event handlers exist for all the
events mentioned in section 2.1.

2.4 Vertical instrumentation
The dynamic instrumentation tool captures all native instructions
and memory accesses from both the application and the virtual
machine during the execution of a Java application within Javana.
The vertical map then enables the dynamic binary instrumentation
tool to know for each memory access what object is being accessed
and what the object’s type is; and for every instruction pointer,
the dynamic binary instrumentation tool knows to what method,
to what line of source code and to what thread the instruction
corresponds. The end result is that Javana allows for easily tracking
all Java object accesses, which is much harder to do without a
vertical map and dynamic binary instrumentation support.

In our proof-of-concept Javana system we keep track of the ver-
tical map using two AVL trees — an AVL tree is a self-balancing
binary search tree. The first AVL tree, the method tree, contains



mapping information between instruction pointers and method in-
formation. A node in the method tree is identified by an instruction
pointer address range that corresponds to a line of source code. In-
struction pointer ranges that are not represented in the method tree
do not correspond to a Java source code line. The second AVL tree
called the object tree contains object information. A node in the
object tree identifies an object based on the object’s address range,
i.e., the object’s address and size. The remaining address ranges
refer to non-objects.

Note that the method and object trees are accessed very fre-
quently during a profiling run. For example, for every memory ac-
cess the object tree needs to be searched for the corresponding ob-
ject. This is very time-consuming and has a big impact on the over-
all profiling overhead. We therefore optimized the accessing of the
method and object trees by adding a caching mechanism that tracks
recently accessed object and method information. We obtain an av-
erage hit rate for the object and method tree caches of 67% and
99%, respectively. In addition, we further optimize the miss case
by searching the tree starting from the previous hit. This reduces
the tree search time thanks to spatial locality.

2.5 Perturbation
An important property of any instrumentation framework is that
the results that are obtained during profiling may not suffer from
perturbation. The end user wants the instrumentation framework
to be completely transparent to its user, i.e., the instrumentation
framework should not impact the results from profiling.

More in particular, in our Javana system, care needs to be taken
so that the profiling results are not perturbed by the event handling
mechanism. Recall that the virtual machine triggers events by call-
ing an empty method using a number of arguments. Computing
the arguments, pushing them onto the stack, and finally calling the
empty method introduces some overhead. Since the dynamic binary
instrumentation tool instruments all natively executed instructions,
the instructions executed for triggering an event in the virtual ma-
chine get instrumented as well. In order to alleviate this issue, and
to remove any perturbation because of the event handling mecha-
nism, we communicate the address ranges of the virtual machine
code for event triggering. As such, the dynamic binary instrumen-
tation tool knows that the code executed in these address ranges
needs to be disregarded.

Another issue is that many virtual machines use the notion of
absolute time to trigger various internal events. This could be the
case for detecting hot code that needs to be scheduled for optimiza-
tion. Detecting hot code can be done by sampling the call stack;
when the number of samples of a given method gets above a given
threshold, the method is considered for optimization. The Java
thread scheduling also relies on the notion of time. Java threads get
time quanta for execution and when a time quantum has finished,
another Java thread can be scheduled. Running a virtual machine
within a Javana system causes the virtual machine to run slower,
and by consequence, this affects timer-based virtual machine events
such as code optimization and Java thread scheduling. This can be
solved by using deterministic replay techniques [3]. In fact, it is
common practice in virtual machine research to solve the code op-
timization non-determinism by having the virtual machine write out
its recompilation strategy during an uninstrumented run, and then
reuse this recompilation strategy during the instrumented run.

2.6 A proof-of-concept Javana system
The Javana system is a general framework for building a system
for building customized Java program analysis tools. Any virtual
machine could be employed in this framework and any dynamic
binary instrumentation tool could be used as well. In our experi-

mental framework, we use the Jikes RVM as our virtual machine
and we use DIOTA as our dynamic binary instrumentation tool.

2.6.1 Jikes RVM
The Jikes Research Virtual Machine [1] is an open source Java
virtual machine written almost entirely in Java. Jikes RVM uses
a compilation-only scheme (no interpretation) for translating Java
bytecodes to native machine instructions. In our experiments we
use the FastAdaptive profile: all methods are initially compiled
using a baseline compiler, and hot methods are recompiled using
an optimizing compiler.

Making the Jikes RVM Javana-enabled was easy. We only had
to insert around two hundred lines of code (including comments)
into the virtual machine in order to trigger the events intercepted
by the dynamic binary instrumentation tool. More specifically,
we added an event to the class loader, to the object allocator, to
all garbage collectors when an object or code is being moved or
deleted, to all compilers and optimizers when a method is being
compiled or optimized, and to the thread management system when
a thread is created, switched or terminated.

There is one peculiarity with instrumenting the Jikes RVM itself
that needs special attention — this is because the Jikes RVM is
written in Java. Instrumentation cannot be activated until the virtual
machine is properly booted. This means that there are some virtual
machine methods and objects that cannot be communicated to the
binary instrumentation tool during virtual machine startup. This can
be solved by communicating these virtual machine methods and
objects as soon as the virtual machine is properly booted. From
then on, the instrumentation tool intercepts all method calls and
object accesses during the program execution.

2.6.2 DIOTA
The dynamic binary instrumentation tool that we use in our proof-
of-concept Javana system is DIOTA [17]. DIOTA stands for Dy-
namic Instrumentation, Optimization and Transformation of Ap-
plications and is a dynamic binary instrumentation framework for
use on the Linux operating system running on x86-compatible pro-
cessors. Its functionality includes intercepting memory operations,
code execution, signals, system calls and functions based on their
name or address, as well as the ability to instrument self-modifying
code [16].

DIOTA is implemented as a dynamic shared library that can
be hooked up to any program. The main library of DIOTA con-
tains a generic dynamic binary instrumentation infrastructure. This
generic instrumentation framework can be used by so-called back-
ends that specify the particular instrumentation of interest that
needs to be done. The backend that we currently use is a memory
operation tracing backend, i.e., this backend instruments all mem-
ory operations.

The general operation of DIOTA is very similar to that of other
dynamic binary instrumentation frameworks such as PIN [15] and
Valgrind [18]. All of these operate in a similar way as described in
section 2.2.

3. The Javana language
A system for building customized Java program analysis tools also
requires an easy-to-use instrumentation framework. The instrumen-
tation framework is the environment in which the end user will
build its profiling tools. In this paper, we introduce the Javana in-
strumentation language for building Java program profiling tools.
The Javana instrumentation language is inspired by the Aspect-
Oriented Programming (AOP) paradigm because AOP matches the
needs in instrumentation very well.



time qualifier := before | after
params := location t const t * loc , type t const * type , void ** userdata
object operation := create (params) | copy (params, params) | delete (params)
object event := object:object operation
memory operation := read (params) | write (params) | access (params)
memory operation target := object | nonobject | any
memory event := memory operation target:memory operation
event := time qualifier memory event | object event {advice code}

Figure 2. The grammar of the Javana instrumentation language.

3.1 Aspect-Oriented Programming
Aspect-oriented programming (AOP) [13] is best known in the con-
text of high-level languages and software design methodologies,
ranging from UML [24] and AspectJ for Java [12] to AspectC++
for C++ [22] to TinyC2 for C [26]. The basic idea of aspect-oriented
programming originally came from the observation that not all
functionality in a programming model can be cleanly separated into
objects or modules. Some requirements crosscut entire class hier-
archies, multiple modules and complete programs. Aspect-oriented
programming allows for specifying a desired functionality that con-
cerns the whole program in a modular implementation.

Logging an application’s execution is one of the best known
examples. Implementing a logging facility in a traditional manner
without AOP requires that logging code is inserted all over the
program. This is very time-consuming, error-prone and hard to
maintain from a software development point of view. AOP on
the other hand allows for extracting this logging facility into a
separate module, that is then woven by a weaver with the rest of the
program at compile time or even at run time. AOP thus significantly
improves software maintainability.

In general, an AOP language consists of joinpoints, pointcuts
and finally the advice. A joinpoint specifies where and when one
can interfere in the structure or execution of a program. This can
range from source code line numbers to syntactical constructions
to even run time events. A pointcut is a collection of joinpoints.
Typically, a symbolic name can be associated with a pointcut for
later reference. Finally, the advice is code that is associated with
a pointcut. The advice will be executed whenever the conditions
specified by the pointcut are fulfilled.

The general idea of AOP languages of segregating crosscutting
concerns in separate modules is also very much applicable to the
low-level instrumentation of programs at the machine code level.
In fact, instrumenting a binary involves inserting additional code
across the entire program in order to measure a program metric
of interest [4, 14, 15, 18, 23]. Since the instrumentation itself
can be completely segregated from the original program, AOP is
a natural way for specifying instrumentation routines [19]. The
Javana instrumentation language is inspired by the AOP concept.

3.2 The Javana instrumentation language
The Javana instrumentation language is a domain-specific language
developed for the purpose of instrumenting programs written in
object-oriented languages such as Java. It combines support for rec-
ognizing native execution information along with high-level lan-
guage concepts such as objects, object types, methods, lines of
code, threads, etc.

The grammar of the Javana instrumentation language is shown
in Figure 2. A joinpoint that describes an event in the Javana
instrumentation language consists of a time qualifier followed by a
memory event or an object event, followed by the advice code. The
time qualifier specifies when the event should be triggered. This
can be before or after the event of interest. The events that can be
triggered are memory events or object events. For each of those, a

struct mem_access_t {
int ip; /* instruction pointer */
int addr; /* memory address being accessed*/
int size; /* number of bytes accessed */
int ld_st; /* load or store ? */
int thread_ID; /* thread ID */

}

struct location_t {
struct mem_access_t *ma; /* pointer to

mem_access_t structure */
int method_ID; /* method ID */
char* method_name; /* method’s name */
int line_number; /* line number in given method */

}

struct type_t {
int type_ID; /* object class ID */
char* type_name; /* object class name */

}

Figure 3. Data structures provided in the Javana instrumentation
language.

number of parameters are given. These parameters can then be used
by the advice code. The advice code is the instrumentation code in
C inserted by the end user.

Javana also comes with a translator for converting the Javana in-
strumentation statements as specified in Figure 2 into C-statements
while keeping the advice code (that is written in C) untouched. The
translated instrumentation specification is then linked with DIOTA
and the Jikes RVM for driving the profiling run.

We now discuss the object and memory events, the parameters
that are provided with these events and finally the Javana direc-
tives. Example instrumentation specifications clarifying how to use
the Javana instrumentation language in practice will be given in
section 5.

3.2.1 Object events
An object event consists of the keyword object followed by
an object operation. The object operation can be the creation
(create), copying (copy) or deletion (delete) of an object.

3.2.2 Memory events
A memory event consists of memory operation target and the mem-
ory operation itself. The memory operation target can be an object,
memory not belonging to an object or any of those. This allows
the end user to focus the instrumentation of memory accesses to
objects only, non-objects only, or to both objects and non-objects.
The memory operation specifies the type of memory access that
should be instrumented. This allows the end user to focus on reads,
writes or both.

3.2.3 Parameters
The parameters that are provided by the Javana instrumentation
language are shown in Figure 3. These parameters can be used
in the advice code for driving the instrumentation. The first pa-



rameter is a data structure that collects information concerning
the ‘location’ of the object or memory event. This is done in the
location t structure. The first element in this structure is a
pointer to a mem access t structure. This latter structure con-
tains (i) the instruction pointer of the native instruction performing
the object or memory operation, (ii) the object’s memory location
or in case of a memory operation, the memory location being ac-
cessed, (iii) the size of the object or in case of a memory operation,
the number of bytes accessed in memory, (iv) whether this mem-
ory access is a load or store operation—note this has no meaning
in case of an object operation, and finally (v) the thread ID of the
thread performing the object or memory operation. The second and
third element in the location t data structure are the method
ID and the method name performing the object or memory opera-
tion, respectively. The fourth and final element is the source code
line number in the given method that corresponds to this object or
memory operation.

The second parameter in the parameter list is a pointer to a data
structure that specifies information concerning the ‘type’ of the
object or memory operation. This type t structure holds a type
ID and a type name of the object or memory operation. This means
that for every object being created, copied, deleted or accessed,
the Javana instrumentation language provides the end user with
information concerning the object’s type.

The third parameter in the parameter list (void **userdata)
allows the end user to maintain object-specific information. The
end user may for example set up a data structure for a given object;
the pointer to this data structure can be stored through this third
parameter. The binary instrumentation tool then makes sure that
this pointer is available for all object and memory operations that
refer to that same object.

3.2.4 Javana directives
The Javana instrumentation language also comes with a number of
directives that can be specified at the beginning of the instrumenta-
tion specification file. There are two directives in our current imple-
mentation, namely #pragma requires method info and
#pragma requires object info. The purpose of these
directives is to improve performance, i.e., to reduce the over-
head of the vertical instrumentation. The #pragma requires
method info directive informs the dynamic binary instrumenta-
tion tool that the method ID, the method name and source code line
number should be kept track of during binary instrumentation. The
#pragma requires object info directive informs the dy-
namic binary instrumentation tool that the object type ID and the
object type name should be kept track of.

The user can decide not to include any of these two directives
in the instrumentation specification, to include only one of these,
or to include both. This will affect the amount of information that
can be gathered during a profiling run as well as the amount of
overhead experienced during profiling. For example, if a user is in-
terested in measuring the cache miss rate per method and per source
code line number, then there is no benefit in collecting per-object
information. The user can then use the #pragma requires
method info to disable tracking object-related information dur-
ing the instrumentation run. This will limit the slowdown during
vertical profiling.

4. Javana performance
This section quantifies the slowdown of the Javana system.

4.1 Experimental setup
In our evaluation of Javana’s performance we use the SPECjvm98
benchmark suite, the SPECjbb2000 benchmark as well as the Da-

Capo benchmarks, see Table 1. The SPECjvm98 benchmark suite1

is a client-side Java benchmark suite consisting of seven bench-
marks. We run all SPECjvm98 benchmarks with the largest input
set (-s100). SPECjbb20002 emulates the middle-tier of a three-
tier system; the pseudojbb variant of the SPECjbb2000 bench-
mark that we use in our analysis runs for a fixed amount of work,
i.e., for a fixed number of transactions, in contrast to SPECjbb2000
which runs for a fixed amount of time. The DaCapo benchmark
suite3 is an open-source benchmark suite designed for memory
management research; we use release version beta050224. All of
the SPECjvm98 benchmarks are run on the Jikes RVM using a
64MB heap and the generational mark-sweep (GenMS) garbage
collector; pseudojbb and the DaCapo benchmarks are run with a
500MB heap. Our measurements are done on a 2.8GHz Intel Pen-
tium 4 system with a 512KB L2 cache and 1GB main memory.
The operating system on which we run our experiments is Gentoo
Linux with a 2.6.10 kernel.

4.2 Javana overhead analysis
Running a Java application within Javana obviously introduces
overhead. There are a number of contributors to the overall over-
head:

• First, the dynamic binary instrumentation tool that runs under-
neath the virtual machine causes overhead.

• Second, the event handling mechanism that communicates
high-level language concepts from the virtual machine to the
dynamic binary instrumentation tool also causes overhead. In
addition, the event handler needs to process this information for
updating the vertical map in the dynamic binary instrumenta-
tion tool.

• Third, executing instrumented code requires that the binary in-
strumentation tool searches the vertical map for every memory
location accessed.

• And finally, executing the instrumentation code itself as imple-
mented by the end user of the Javana system also causes addi-
tional overhead.

We will now quantify the overhead caused by each of these four
overhead contributors.

4.2.1 Dynamic binary instrumentation overhead
We first quantify the overhead of the binary instrumentation (bullet
one from above). There are two contributors to this overhead. First,
whenever a control transfer occurs to a computed address, this
address must be looked up in the binary instrumentation engine in
order to transfer control to the corresponding instrumented code.
The overhead that we observe for DIOTA in our Javana system
ranges from 1.5X to 5.5X, see Figure 4.

The second contributor is due to calling an instrumentation rou-
tine for all natively executed memory operations. We quantify this
overhead by calling a dummy (empty) function for each memory
operation. The overhead varies between a factor 12X and 53X de-
pending on the benchmark, see Figure 4. This overhead is inherent
to dynamic binary instrumentation. Other dynamic binary instru-
mentation tools such as PIN [15] and Valgrind [18] show similar
overheads.

4.2.2 Vertical instrumentation overhead
We now quantify the overhead caused by the event handling mech-
anism and by searching the vertical map for every memory location

1 http://www.spec.org/jvm98/
2 http://www.spec.org/jbb2000/
3 http://www-ali.cs.umass.edu/DaCapo/gcbm.html

http://www.spec.org/jvm98/
http://www.spec.org/jbb2000/
http://www-ali.cs.umass.edu/DaCapo/gcbm.html


Suite Benchmark Description

SPECjvm98

jess Solves a number of puzzles with varying degrees of complexity
db Performs a set of database requests on a memory resident database
javac Compiles a number of Java files
mpegaudio Decompresses MPEG I Layer 3 audio files
mtrt Renders a scene using ray tracing
jack Parses grammar files and generates a parser for each

SPECjbb2000 pseudojbb Emulates the middle tier of a three tier system

DaCapo

hsqldb Executes a number of transactions against a memory resident database
antlr Parses grammar files and generates a parser and lexical analyzer for each of them
fop Takes an XSL-FO file, parses it and formats it, generating a PDF file
jython Interprets a series of Python programs
ps Reads and interprets a PostScript file
xalan Transforms XML documents into HTML

Table 1. The benchmarks used in this paper.
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Figure 4. Slowdown due to dynamic binary instrumentation.
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Figure 5. Slowdown due to vertical instrumentation.

accessed (bullets two and three from above). We collectively refer
to this overhead as vertical instrumentation overhead, i.e., this is
the overhead that enables cross-layer instrumentation. In our ex-
periments we observed that the event handling mechanism is only
a very small part of the total vertical instrumentation overhead.

Figure 5 quantifies the overhead from vertical instrumentation.

• The first bar for each benchmark shows the overhead for the Ja-
vana system during a vertical profiling run that only considers
method-related information, i.e., the Javana directive #pragma
requires method info was set in the instrumentation
specification. This causes the method tree to be searched for
every memory access; the object tree is not searched.

• The second bar measures the overhead when enabling vertical
profiling for measuring object-related information. The Javana
directive #pragma requires object info was set. In
other words, the vertical object tree is searched, but not the
method tree.

• The third bar quantifies the overhead when both the method
tree and the object tree are searched. Both the #pragma
requires method info and #pragma requires
object info directives are set.

The average vertical instrumentation overhead varies between
a factor 2.8X and 5.5X depending on what information is to be
kept track of. The third bar (searching the method and object
trees) quantifies the total overhead; and this causes an average
slowdown of a factor 5.5X. However, using the Javana directives,
see two leftmost bars ‘searching method tree’ and ‘searching object
tree’, significant reductions in overhead are obtained. The average
slowdown for the vertical method and object instrumentation is a
factor 2.8X and 4.4X, respectively.

4.2.3 Overall overhead
From the above enumeration, it follows that the total slowdown of
a Java program analysis tool built within Javana equals the product
of the dynamic binary instrumentation slowdown, the vertical in-
strumentation slowdown and the slowdown due to the user-defined
instrumentation routines, i.e., the advice code included in the in-
strumentation specification.

The total slowdown for the dynamic binary instrumentation
and the vertical instrumentation varies between a factor 90X and
345X. This is the overhead caused by using Javana. The additional
overhead due to the instrumentation routines, increases the overall
overhead to the 125X-850X range; this is for the vertical cache
simulation which is the most demanding vertical profiling tool that
we built with Javana.

According to our experience, this is an acceptable slowdown.
Compared to simulation, Javana is fast; simulation typically causes
a slowdown by at least a factor 10,000X [2]. In cases where a
90X to 345X slowdown is undesirable, sampling can be employed



1: before any:access (location_t const *loc, type_t const *type, void **userdata) {
2: printf ("access by insn @ %p to memory location %p of size %d\n", loc->ma->ip, loc->ma->addr, loc->ma->size);
3: }

Figure 6. Memory address tracing tool in Javana.

to reduce this slowdown. However, this comes at the price of
lost accuracy; our measurements were done without applying any
sampling.

5. Applications
We now discuss three example applications of the Javana system:
memory address trace generation, vertical cache simulation and ob-
ject lifetime computation. These applications demonstrate the real
power of Javana: Javana provides an easy-to-use instrumentation
environment that allows for quickly building customized (vertical)
Java program analysis tools. The key benefit is that easy-to-build
program analysis tools increase a software designer’s productivity.
And in addition, the results from profiling runs could yield invalu-
able information for optimizing the application.

5.1 Memory address trace generation
Our first application is memory access tracing; the instrumentation
specification for building this profiling tool is shown in Figure 6.
This profiling tool captures all memory accesses during program
execution and writes to a file each access’ instruction pointer,
memory address and size. As can be seen from Figure 6, the
Javana instrumentation language only requires three lines of code
for building this profiling tool. In other words, the expressiveness
of the Javana language is high while the code itself is very intuitive.
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Figure 7. The fraction of all memory accesses that are heap ac-
cesses.

Recent work done by Shuf et al. [21] analyzed the memory be-
havior of Java applications. For doing so, Shuf et al. modified the
virtual machine to trace all accesses to the heap, however, they did
not trace accesses to the stack — presumably because it is very
difficult to track all memory accesses including stack accesses by
instrumenting the virtual machine. Using Javana we built a profil-
ing tool that traces all heap memory accesses and all stack memory
accesses. We found that on average only 42% of all memory ac-
cesses are heap accesses, see Figure 7 which shows the fraction
heap accesses compared to the total number of data memory ac-
cesses. In other words, Shuf et al. captured only 42% of the total
number of memory accesses on average. Consequently, not captur-
ing the large fraction of non-heap accesses has a significant impact
on the overall memory system behavior. Figure 8 shows the frac-
tion L1 and L2 misses as a ratio to the total number of memory
accesses. These results are for a simulated 4-way set-associative

32KB 32-byte line L1 cache and an 8-way set-associative 1MB
128-byte line L2 cache. Both are write-back, write-allocate caches.
The cache simulation routines were taken from the SimpleScalar
Tool Set [2]. We observe that only considering heap accesses re-
sults in a severe overestimation of the actual cache miss rates. The
difference in miss rates varies by a factor 1.8 and 2.9 between track-
ing heap accesses versus tracking all memory accesses. Therefore,
we conclude that a methodology that analyzes heap accesses only
in a memory performance study, is questionable.

5.2 Vertical cache simulation
The second application relates cache miss rates to high-level con-
cepts such as methods, source code lines, objects and object types.
This is invaluable information for software developers that are in
the process of optimizing their code for memory performance. As is
well known, the memory-processor speed gap is an important issue
in current computer systems. Poor memory behavior can severely
affect overall performance. As such, it is very important to opti-
mize memory performance as much as possible. Vertical profiling
is a very valuable tool for hinting the software developer what to
focus on when optimizing the application’s memory behavior.

Vertical cache simulation requires that an instrumentation spec-
ification be written as shown in Figure 9. Lines 0 and 1 specify that
the instrumentation needs to keep track of both per-object and per-
method information. Upon a memory access to an object (lines 2-
6), the memory address is used by the cache simulator to update the
cache’s state. The type-specific and method-specific data structures
maintained by the instrumentation tool are updated to keep track
of the per-type and per-method miss rates. Other memory accesses,
i.e., to non-objects (lines 7-10), update the cache’s state and update
the per-method miss rate information. The per-type miss rate in-
formation is not updated because these memory references do not
originate from object accesses.

The instrumentation specification for this profiling tool was no
more than 200 lines of code, including comments. The output of
the profiling run is a table describing cache miss rates per method,
per line of code, per object and per object type.

Selecting the per-method and per-object type cache miss rates
and sorting them by decreasing number of L2 misses results in
Tables 2 and 3. In both tables we limit the number of methods
and object types to the top five per benchmark in order not to
overload the tables. The first column in each table mentions the
method or object type, respectively. The second column shows the
percentage of memory references of the given method or object
type as a percentage of the total number of memory references.
The two rightmost columns show the number of L1 and L2 misses,
respectively, along with the percentage local miss rates, i.e., the
number of misses divided by the number of accesses to the given
cache level.

Software developers can use these tables to better understand
the memory behavior of their software for guiding memory opti-
mizations at the source code level. For example, from Table 2 it is
apparent that the shell sort method in db is a method that suf-
fers heavily from poor cache behavior. About 60% of the memory
references in db occur within the shell sort method. Of these
memory references, 10.5% result in an L1 cache miss, and 31.7%
of the L2 cache accesses are cache misses. As such, this method is
definitely a method of concern to a software developer when opti-
mizing the memory performance of db.
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Figure 8. Cache miss rates using Javana versus Shuf et al.’s methodology: L1 data cache miss rates (number of L1 data cache misses divided
by the number of L1 data accesses) on the left and global L2 data cache miss rates (number of L2 data misses divided by the number of L1
data accesses) on the right.

0: #pragma requires object_info
1: #pragma requires method_info

2: before object:access (location_t const *loc, type_t const *type, void **userdata) {
/* compute whether this object reference is a cache miss or not */

3: hit = simulate_memory_access (loc->ma->addr, type->type_ID);
/* update the per-type hit/miss information */

4: update_per_type_miss_rate (type->type_ID, hit);
5: update_per_method_miss_rate (loc->method_name, loc->line_number);
6: }

7: before nonobject:access (location_t const *loc, type_t const *type, void **userdata) {
/* update the simulated cache content */

8: simulate_memory_access (loc->ma->addr, -1);
9: update_per_method_miss_rate (loc->method_name, loc->line_number);
10: }

Figure 9. Vertical cache simulation tool in Javana.

0: #pragma requires object_info

1: typedef {
2: unsigned long long creation_time;
3: unsigned long long last_access;
4: } object_info_t;

5: static unsigned long long timestamp = 0;

6: after object:create (location_t const *loc, type_t const *type, void **userdata) {
7: object_info_t ** const objectinfo = (object_info_t**)userdata;

8: (*objectinfo) = diota_malloc(sizeof(object_info_t));
9: (*objectinfo)->creation_time = timestamp;
10: (*objectinfo)->last_access = 0;
11: }

12: before object:access (location_t const *loc, type_t const *type, void **userdata) {
13: object_info_t ** const objectinfo = (object_info_t**)userdata;

14: timestamp++;
15: (*objectinfo)->last_access = timestamp;
16: }

17: before nonobject:access (location_t const *loc, type_t const *type, void **userdata) {
18: timestamp++;
19: }

Figure 10. Object lifetime computation tool in Javana.



Method Accesses DL1 misses DL2 misses
201 compress
Compressor.compress()V 42.7% 130906173 (7.8%) 533099 (0.4%)
Decompressor.decompress()V 42.7% 21390490 (1.3%) 485995 (2%)
Input Buffer.readbytes([BI)I 1.8% 247545 (0.3%) 55151 (18.4%)
Compressor.output(I)V 4.5% 207706 (0.1%) 35700 (14%)
Output Buffer.putbyte(B)V 0.9% 125551 (0.3%) 25169 (17.2%)
213 javac
Assembler.add(IILjava/lang/Object;)V 0.3% 188725 (3.2%) 46040 (16.9%)
CompoundStatement.check(LEnvironment;LContext;JLjava/util/Hashtable;)J 0.1% 184186 (12%) 32186 (13.2%)
Expression.<init>(IILType;)V 0.2% 138495 (2.8%) 29645 (15.1%)
Instruction.<init>(IILjava/lang/Object;)V 0.1% 115000 (4.6%) 27981 (16.8%)
CompoundStatement.code(LEnvironment;LContext;LAssembler;)V 0.1% 107313 (7.3%) 27416 (17.7%)
228 jack
TokenEngine.getNextTokenFromStream()LToken; 4% 214496 (0.5%) 8757 (3.3%)
Token.<init>()V 0.1% 31771 (2.6%) 7689 (14.1%)
JackConstants.printToken(LToken;Ljava/io/PrintStream;)V 0.2% 18382 (1%) 4564 (14.1%)
TokenProcessor.action(LExpansion;)V 0% 5299 (2.5%) 2568 (32.7%)
RunTimeNfaState.Move(CLjava/util/Vector;)I 4.5% 369592 (0.7%) 2168 (0.4%)
209 db
Database.shell sort(I)V 59.8% 132442434 (10.5%) 50720398 (31.6%)
Entry.equals(Ljava/lang/Object;)Z 3.5% 3413385 (4.6%) 1720280 (36%)
Database.set index()V 6% 3924453 (3.1%) 1345881 (28.7%)
Database.read db(Ljava/lang/String;)V 0.8% 36682 (0.2%) 9152 (13%)
spec.io.FileInputStream.read()I 0% 5078 (0.7%) 3927 (60%)
227 mtrt
OctNode.FindTreeNode(LPoint;)LOctNode; 11.8% 27446406 (12.1%) 463179 (1.5%)
PolyTypeObj.Intersect(LRay;LIntersectPt;)Z 3.9% 1718595 (2.3%) 184134 (9.9%)
Vector.<init>(FFF)V 0.3% 715338 (13.7%) 177453 (22%)
OctNode.Intersect(LRay;LPoint;F)LOctNode; 16.4% 1463021 (0.5%) 145254 (8.9%)
Face.GetVert(I)LPoint; 14.3% 9920823 (3.6%) 113315 (1%)
202 jess
jess.Node2.appendToken(Ljess/Token;Ljess/Token;)Ljess/Token; 5.4% 6482818 (7.5%) 490280 (5.7%)
jess.Value.<init>(DI)V 0.9% 786943 (5.3%) 176391 (16.5%)
jess.RU.getAtom(I)Ljava/lang/String; 2.1% 724295 (2.1%) 115008 (12%)
jess.Node2.findInMemory(Ljess/TokenVector;Ljess/Token;)Ljess/Token; 1.7% 3197035 (11.5%) 26021 (0.6%)
jess.Value.<init>(II)V 0.1% 120645 (8.2%) 20881 (13.1%)
hsqldb
Column.createSQLString(Ljava/lang/Object;I)Ljava/lang/String; 0.6% 490464 (3%) 353687 (44.4%)
Table.getInsertStatement([Ljava/lang/Object;)Ljava/lang/String; 0.8% 325886 (1.4%) 145450 (27.7%)
Index.next(LNode;)LNode; 0.2% 152695 (3.3%) 141248 (53.8%)
Expression.<init>(ILjava/lang/Object;)V 0.2% 545316 (9.6%) 135686 (14.3%)
Result.<init>()V 0% 142437 (10%) 35338 (14.3%)
antlr
collections.impl.BitSet.toArray()[I 2.8% 678978 (1.2%) 168854 (13.6%)
collections.impl.BitSet.orInPlace(Lcollections/impl/BitSet;)V 1.1% 440776 (2%) 92577 (13%)
Lookahead.<init>()V 0.1% 48837 (4.7%) 10240 (13.5%)
AlternativeBlock.getAlternativeAt(I)LAlternative; 0.3% 73447 (1.2%) 8135 (7.5%)
LLkAnalyzer.look(ILAlternativeBlock;)LLookahead; 0.1% 76247 (4.4%) 7967 (7%)
jython
core.Py.newInteger(I)Lcore/PyInteger; 2.3% 3046300 (2.1%) 677551 (13.5%)
pycode. pyx2.mmult$2(Lcore/PyFrame;)Lcore/PyObject; 7.2% 2688617 (0.6%) 367581 (8.6%)
core.PyObject. iadd (Lcore/PyObject;)Lcore/PyObject; 1.3% 1414629 (1.8%) 348087 (16%)
core.PyObject. add(Lcore/PyObject;)Lcore/PyObject; 1% 568570 (0.9%) 139698 (15.9%)
core.PySequence. finditem (I)Lcore/PyObject; 3.4% 470246 (0.2%) 114780 (14.1%)
xalan
utils.SuballocatedIntVector.addElement(I)V 6.1% 1178740 (0.7%) 230876 (11.8%)
utils.SuballocatedIntVector.elementAt(I)I 1.4% 648314 (1.7%) 79537 (10.2%)
dtm.ref.DTMDefaultBase.indexNode(II)V 0.4% 77218 (0.7%) 11836 (9.3%)
dtm.ref.DTMDefaultBase.findGTE([IIII)I 1.4% 96575 (0.2%) 8676 (7.2%)
serializer.WriterToUTF8Buffered.write([CII)V 0.1% 23178 (1.2%) 1307 (4.5%)
fop
fo.flow.Block.layout(Llayout/Area;)I 0.1% 116716 (18.9%) 3900 (2.7%)
layout.inline.InlineSpace.<init>(I)V 0% 12918 (8.1%) 3297 (20.6%)
fo.FOText.layout(Llayout/Area;)I 0% 60908 (18.3%) 3297 (4.4%)
fo.expr.PropertyTokenizer.<init>(Ljava/lang/String;)V 0% 14369 (6.5%) 3085 (15.4%)
fo.PropertyList.get(Ljava/lang/String;ZZ)Lfo/Property; 0.6% 108845 (2.4%) 2437 (1.8%)
ps
PSObject.DictionaryObject.getValueOf(LPSObject/PSObject;)LPSObject/PSObject; 10.4% 6274191 (1.5%) 247961 (2.8%)
State.DictStack.getValueOf(LPSObject/PSObject;)LPSObject/PSObject; 1.2% 585068 (1.3%) 78663 (9.7%)
PSObject.PSObject.<init>()V 0.1% 126756 (5.1%) 12993 (7.9%)
PSObject.ProcedureObject.execute()V 0.5% 867436 (4%) 3130 (0.2%)
State.PathPoint.<init>(DD)V 0% 22820 (6.4%) 3124 (9.9%)

Table 2. The top 5 methods for each of the benchmarks sorted by the number of L2 cache misses.



Type Accesses DL1 misses DL2 misses
201 compress
[B 20.6% 13001417 (1.6%) 1038857 (7.1%)
[I 9.2% 100254792 (27.8%) 56465 (0%)
[S 4.7% 41699357 (22.6%) 54699 (0.1%)
[Ljava/lang/Object; 0.4% 4010 (0%) 406 (8.8%)
[[I 0.1% 1632 (0%) 368 (19.6%)
213 javac
LInstruction; 1% 1809398 (7.8%) 95228 (3.6%)
LFieldExpression; 0.3% 297830 (4.2%) 54787 (13.1%)
LIdentifierExpression; 0.3% 376774 (5.1%) 51935 (9.8%)
LExpressionStatement; 0.1% 179932 (7.2%) 34840 (13.9%)
LMethodExpression; 0.2% 195649 (3.8%) 30122 (11%)
228 jack
LToken; 0.2% 96473 (3.6%) 19971 (12.3%)
[I 4.1% 297878 (0.6%) 3900 (0.8%)
[J 0.7% 18526 (0.2%) 2600 (8.7%)
Ljava/util/Hashtable; 1.2% 130877 (0.9%) 2389 (1.1%)
Ljava/lang/String; 2.5% 23519 (0.1%) 2384 (7%)
209 db
Ljava/util/Vector; 15.3% 36375367 (11.2%) 17288803 (38.8%)
[Ljava/lang/Object; 7.2% 24118101 (15.7%) 11838596 (41.3%)
[C 11.7% 22697725 (9.1%) 11598229 (42.4%)
LEntry; 4.1% 28511936 (32.6%) 7941652 (22.7%)
Ljava/lang/String; 13% 22717143 (8.3%) 4348649 (15.6%)
227 mtrt
LVector; 5.5% 3968361 (3.7%) 554763 (12.7%)
LPoint; 10.6% 15020935 (7.4%) 358453 (2.1%)
[LPoint; 3.5% 10720458 (16%) 114210 (1%)
[I 4.7% 1055491 (1.2%) 97335 (8.4%)
LFace; 3.3% 6796479 (10.7%) 82116 (1.1%)
202 jess
[Ljess/ValueVector; 6.7% 5644607 (5.3%) 370383 (5%)
Ljess/Value; 4.5% 3643209 (5.1%) 216290 (4.6%)
Ljava/lang/Integer; 0.5% 374152 (4.4%) 80287 (15.8%)
Ljess/Token; 4.5% 5324507 (7.4%) 43438 (0.6%)
[Ljess/Value; 6.2% 3964254 (4%) 13348 (0.3%)
hsqldb
Ljava/lang/Integer; 0.6% 443743 (2.5%) 353576 (47.9%)
LMemoryNode; 0.8% 1098884 (5%) 174004 (10.8%)
[Ljava/lang/Object; 2.5% 2085372 (2.9%) 147628 (5.1%)
LExpression; 0.3% 685749 (9.3%) 135919 (11.4%)
LResult; 0% 142438 (23.7%) 35359 (14.3%)
antlr
[I 6.7% 2250997 (1.7%) 201101 (6.3%)
[J 3.7% 677296 (0.9%) 114003 (10.7%)
[C 5.5% 95725 (0.1%) 13275 (9%)
LLookahead; 0.2% 143657 (4.6%) 12755 (6%)
LAlternative; 0.1% 137362 (6.3%) 10652 (5.2%)
jython
Lcore/PyInteger; 4.4% 8793859 (3.3%) 1424117 (9.9%)
Lcore/PyList; 5.8% 254839 (0.1%) 22977 (6.4%)
[Lcore/PyObject; 5% 3302410 (1.1%) 13465 (0.2%)
[I 2.8% 81657 (0%) 7148 (6.1%)
[Ljava/lang/Object; 8% 71723 (0%) 5139 (4.8%)
xalan
[I 22.3% 3588258 (0.6%) 332505 (5.9%)
[B 4.2% 506966 (0.4%) 2158 (0.3%)
[[I 1.9% 350386 (0.7%) 1375 (0.3%)
[Ljava/lang/Object; 2.7% 447896 (0.6%) 1062 (0.1%)
[[C 0.1% 36942 (1.2%) 1055 (1.7%)
fop
[I 7.8% 902018 (1.5%) 9785 (0.9%)
Lfo/PropertyList; 1.2% 68644 (0.7%) 5392 (6.3%)
[C 4.1% 88207 (0.3%) 5361 (4.4%)
[Ljava/lang/Object; 2.5% 752290 (3.7%) 5205 (0.6%)
Llayout/inline/InlineSpace; 0% 25860 (11.2%) 3592 (9.9%)
ps
LExceptions/PSObjectException; 0.1% 350039 (6.7%) 86914 (15.5%)
LPSObject/realObject; 0.1% 150678 (7%) 9650 (4.2%)
LState/PathPoint; 0% 26141 (5%) 3162 (8.2%)
Ljava/lang/String; 1.9% 2434633 (3.2%) 2492 (0.1%)
LPSObject/NullObject; 0% 7604 (12.4%) 1919 (18%)

Table 3. The top 5 objects types for each of the benchmarks sorted by the number of L2 cache misses.



Source code DL1 accesses DL1 misses DL2 accesses DL2 misses
1 void shell sort(int fn) {
2 int i, j, n, gap;
3 String s1, s2;
4 Entry e;
5
6 if (index == null) set index(); 67 0 (0%) 0 0 (0%)
7 n = index.length; 134 1 (0%) 1 0 (0%)
8
9 for (gap = n/2; gap > 0; gap/=2) 938 0 (0%) 0 (0%)

10 for (i = gap; i < n; i++) 12276499 910 (0%) 1083 3 (0%)
11 for (j = i-gap; j >=0; j-=gap) { 23064743 8179 (0%) 9615 33 (0%)
12 s1 = (String)index[j].items.elementAt(fn); 157553557 29772665 (19%) 36551726 6095594 (17%)
13 s2 = (String)index[j+gap].items.elementAt(fn); 157553557 24036992 (15%) 29456752 15581062 (53%)
14
15 if (s1.compareTo(s2) <= 0) break; 45015302 128 (0%) 153 1 (0%)
16
17 e = index[j]; 32322537 219 (0%) 228 0 (0%)
18 index[j] = index[j+gap]; 75419253 2654 (0%) 3228 811 (25%)
19 index[j+gap] = e; 43096716 0 (0%) 0 0 (0%)
20 }
21 fnum = fn; 67 61 (91%) 73 61 (84%)
22 }

Table 4. The shell sort method from db annotated with cache miss information. The number of L1 and L2 misses differ from the
numbers given Table 2; the reason is that the numbers in this table were obtained using the baseline compiler whereas the numbers in Table 2
were obtained using the adaptive compiler; the line numbers returned by the adaptive compiler in Jikes are inaccurate.

Table 3 shows per-object type miss rates for the various bench-
marks. The poor cache behavior for db seems to be apparent across
a number of object types. For example, this table shows that the
cache behavior for the Vector class is relatively poor with an L1
cache miss rate of 11.4% and an L2 miss rate of 38.6%. Note that
our framework also allows for going even one step further, namely
to tracking down miss rates to individual objects. This would allow
the software developer to isolate the source of the poor memory be-
havior. We do not include an example of per-object miss rates here
in this paper, however, this could be easily done in Javana.

Because the shell sort method in db seems to suffer the
most from poor cache behavior, we focus on that method now.
Table 4 shows the shell sortmethod annotated with cache miss
information, i.e., L1 and L2 cache miss rates are annotated to each
line of source code. Line 13 seems to be the primary source for
the high cache miss rate in the shell sort method. The reason
is that the j+gap index results in a fairly random access pattern
into the 61KB index array. It’s interesting to note that Hauswirth
et al. [11] also identified the shell sort method as a critical
method for db.

5.3 Object lifetime
Our third example application computes object lifetimes. In this
application we define the object lifetime as the number of memory
accesses between the creation and the last use of an object. Know-
ing the allocation site and knowing where the object was last used
can help a programmer to rewrite the code in order to reduce the
memory consumption of the application or even improve overall
performance [20].

Computing object lifetimes without Javana is fairly compli-
cated. First, the virtual machine needs to be extended in order
to store the per-object lifetime information. Second, special care
needs to be taken so that the computed lifetimes do not get per-
turbed by the instrumentation code. Finally, all object references
need to be traced. This is far from trivial to implement. For ex-
ample, referencing the object’s header is required for accessing the
Type Information Block (TIB) or vertical lookup table (vtable) on
a method call, for knowing the object’s type, for knowing the ar-
ray’s length, etc. Also, accesses to objects in native methods need
to be instrumented manually. Implementing all of this in a virtual
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Figure 11. Cumulative object lifetime distribution for the
SPECjvm98 benchmarks.

machine is time consuming, error-prone and will likely be incom-
plete.

Measuring the object lifetime within Javana on the other hand
is easy to do and in addition, it is accurate because it allows for
tracking all references to a given object. In a Javana instrumenta-
tion specification, an object’s lifetime can be computed and stored
using the per-object void **userdata parameter that is avail-
able in Javana language, see section 3.2. As such, computing object
lifetimes is straightforward to do in Javana — no more than 50 lines
of code. The skeleton of the instrumentation specification is shown
in Figure 10.

Figure 11 shows the lifetime distribution for the SPECjvm98
benchmarks computed using the Javana system. The horizontal axis
on these graphs is given on a log2 scale; the vertical axis shows
the cumulative percentage objects in the given lifetime bucket.
We observe that the object lifetimes are fairly small in general,
i.e., most objects are short-lived objects. For most benchmarks,
the object lifetime typically is smaller than 16 memory accesses
between the creation of an object and its last use. Some benchmark
have a relatively larger object lifetime, see for example javac,
compress and mpegaudio, however the object lifetime is still
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Figure 12. Evaluating the accuracy of object lifetime computa-
tions without Javana: the percentage objects for which a non-Javana
instrumentation results in incorrect lifetime computations.

very small in absolute terms, i.e., the object lifetime is rarely more
than 64 memory accesses.

In order to evaluate the accuracy of object lifetime computa-
tions without Javana, we have set up the following experiment. We
compute the object lifetimes under two scenarios. The first scenario
computes the object lifetime when taking into account all memory
accesses as done using out-of-the-box Javana. The second scenario
computes the object lifetime while excluding all object accesses
from non-Java code; this excludes all the object accesses from na-
tive JNI functions. This second scenario emulates current practice
of building an object lifetime measurement tool within the virtual
machine, without Javana. The results are shown in Figure 12. The
graph shows the percentage of objects for which an incorrect life-
time is computed in current practice, i.e., when not including ac-
cesses to objects through JNI functions. We observe large error
percentages for a couple of benchmarks, namely fop (4%), antlr
(6.5%) and ps (19%). As such, we conclude that current practice
of computing object lifetime without Javana can yield incorrect re-
sults, and this could be misleading when optimizing the code based
on these measurements.

6. Related work
We now discuss related work. We first discuss binary instrumenta-
tion tools followed by bytecode-level instrumentation approaches.
Finally, we detail on existing vertical profiling approaches using
hardware performance counters.

6.1 Binary instrumentation tools
A large body of work exists on instrumentation. A number of static
instrumentation tools have been proposed such as ATOM [23],
EEL [14] and FIT [4]. Static instrumentation tools take a binary and
store an instrumented version of the binary on disk. Executing the
instrumented binary then generates the desired profile information.
Static instrumentation cannot be used for analyzing Java applica-
tions because it cannot deal with dynamically generated code.

Dynamic instrumentation on the other hand does not have that
limitation. Well known examples of dynamic binary instrumenta-
tion frameworks are Valgrind [18], PIN [15] and DIOTA [16, 17].

One specific tool within Valgrind’s tool set is Cachegrind which
is a cache profiler that provides limited vertical profiling capabili-

ties. However, Cachegrind is unable to vertically profile Java appli-
cations, nor is it capable of mapping cache miss rates to objects or
object types.

6.2 Bytecode-level profiling
A number of Java bytecode-level profiling tools have been pre-
sented in the recent literature. These bytecode-level profiling tools
differ from the Javana system in that Javana allows for building ver-
tical profiling tools, whereas bytecode-level profiling tools instru-
ment the intermediate bytecode level. We discuss two bytecode-
level profiling tools now.

Dufour et al. [7] studied the dynamic behavior of Java applica-
tions in an architecture-independent way. To do so, they built a tool
called *J [8] that uses the Java Virtual Machine Profiling Interface
(JVMPI) to collect a wide set of bytecode-level Java program char-
acteristics. The Java metrics that they collect are related to program
size and structure, the occurrence of various data structures (such as
arrays, pointers, etc.), polymorphism, memory usage, concurrency
and synchronization.

Dmitriev [5] presents a Java bytecode-level profiling tool called
JFluid. JFluid can be attached to a running Java application. The at-
tached JFluid then injects instrumentation bytecodes into the meth-
ods of the running Java program. The instrumentation bytecodes
collect profiling information online. When desired, JFluid can be
detached from the running application.

6.3 Vertically profiling Java applications
Some very recent work focused on vertical profiling of Java appli-
cations. The purpose of these approaches is to link microprocessor
performance to the Java application and the virtual machine. How-
ever, they do not allow for building customized vertical profiling
tools.

Hauswirth et al. [11] and the earlier work by Sweeney et al. [25]
presented a vertical profiling approach that correlates hardware per-
formance counter values to manually inserted software monitors in
order to keep track of the program’s execution across all layers. The
low-level and high-level information is collected at a fairly coarse
granularity, i.e., hardware performance counter values and software
monitor values are measured at every thread switch. Hauswirth et
al. measure various hardware performance metrics during multi-
ple runs yielding multiple traces. And because of non-determinism
during the execution, these traces subsequently need to be aligned.
Although being much faster than Javana, there are two important
limitations with this approach. First, aligning traces is challenging
and caution is required in order not to get out of sync [10]. Second,
the granularity is very coarse-grained — one performance number
per thread switch. This allows for analyzing coarse-grained perfor-
mance variations but does not allow for analyzing the fine-grained
performance issues we target.

Georges et al. [9] also provided a limited form of vertical pro-
filing by linking microprocessor-level metrics obtained from hard-
ware performance counters to method-level phases in Java. This al-
lows for analyzing Java applications at a finer granularity than the
vertical profiling approach by Hauswirth et al. [10, 11], however,
the granularity is still much more coarse-grained than the granular-
ity that we can achieve using Javana.

The commercially available tool VTune [6] from Intel also
allows for profiling Java applications. The VTune tool samples
hardware performance counters to profile an application and to
annotate source code with cache miss rate information. However,
given the fact that VTune relies on sampling it is questionable
whether this allows for fine-grained profiling information with little
overhead and perturbation of the results.

All of these vertical profiling approaches rely on a micropro-
cessor’s performance counters. This limits the scope of these tech-



niques to evaluating Java system performance on existing micro-
processors. These approaches do not allow for building customized
vertical Java program analysis tools as the Javana system does.

7. Summary
Understanding the behavior of Java application is non-trivial be-
cause of the tight entanglement of the application and the virtual
machine at the lowest machine-code level. This paper proposed Ja-
vana, a system for quickly building Java program analysis tools. Ja-
vana is publicly available at http://www.elis.ugent.be/
javana/. Javana runs a dynamic binary instrumentation tool un-
derneath a virtual machine. The virtual machine communicates
with the dynamic binary instrumentation tool using an event han-
dling mechanism. This event handling mechanism enables the dy-
namic binary instrumentation layer to build a so called vertical
map. A vertical map keeps track of correspondences between high-
level language concepts such as objects, methods, threads, etc., and
low-level native instruction pointers and memory addresses. This
vertical map provides the Javana end user with high-level informa-
tion concerning every memory access the dynamic binary instru-
mentation tool intercepts. As a result, Javana is capable of tracking
all memory references and all natively executed instructions and to
provide high-level information for each of those.

Javana also comes with an easy-to-use Javana instrumentation
language. The Javana language provides the Javana user with low-
level and high-level information that enables the Javana user to
quickly build powerful Java program analysis tools that crosscut
the Java application, the VM and the native execution layer.

The first key property of Javana is that Java program analysis
tools can be built very quickly. To demonstrate the real power of
Javana we presented three example applications: memory address
tracing, vertical cache simulation and object lifetime computation.
For each of these applications, the core instrumentation specifica-
tion was only a few lines of code.

The second key property of Javana is that the profiling results
are guaranteed to be highly accurate (by construction) because the
dynamic binary instrumentation layer tracks every single natively
executed instruction. Current practice is typically one of manually
instrumenting the virtual machine which is both time-consuming
and error-prone. In addition, the accuracy of the profiling results
might be questionable because it is hard to instrument a virtual
machine in such a way that all memory accesses are tracked, as
we have shown through our example applications.
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